Network Acuity: Social Perceptions in a Small-World Experiment
Sidhartha Jha, Kyosuke Tanaka, Leslie A. DeChurch & Noshir S. Contractor

Problem and Research Questions
Some individuals are clearly better than others at perceiving social connections (who knows whom and who knows who knows whom). These individuals with a high Network Acuity can help organizations like the US Army and NASA effectively and efficiently route or retrieve information.

Is the ability to perceive social connections an individual trait or is it a function of their position in the network?
If it is an individual trait, what could be possible predictors of a high Network Acuity?

Methodology
Web-based platform uses algorithms that requires participants to route messages to other participants at pre-specified degrees of separation in the network.

Network Acuity
This is the ability of an individual to accurately perceive social connections (who knows whom). The measure below takes into account how the individual performed compared to the best possible performance and also takes into account how difficult it was to make the right choice. It averages this over all the messages relayed by the individual.

\[A_4 = \frac{1}{|FS'(i)|} \sum_{(l,k) \in FS'(i)} \left(1 - \frac{X - \min(X)}{\max(X) - \min(X)} \right) \]

1. Averages the trials and excludes deadends and ideal scenarios when all contacts are on the shortest path
2. Measure of performance – how well did the participant perform compared to the best possible performance
3. Measure of difficulty – what’s the difference between choosing the best possible path and the worst possible path

Example Scenarios
- **a:** Exclude this trial
- **b:** Medium acuity score
- **c:** High acuity score
- **d:** Very low score

Results & Analysis

<table>
<thead>
<tr>
<th>Session</th>
<th>openness</th>
<th>neuroticism</th>
<th>conscientiousness</th>
<th>agreeableness</th>
<th>extraversion</th>
<th>creativity</th>
<th>leadership</th>
<th>Betweenness</th>
<th>Outdegree</th>
<th>Indegree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
</tbody>
</table>

Correlation of Individual and Location Measures with Network Acuity

Conclusion
Conscientiousness becomes more important as the individuals participate in more sessions. Part of this can be attributed to a learning curve.

Future Directions
- Future steps include validating and generalizing findings by analyzing more sessions with the same individuals.
- Furthermore, we need to continue to refine our Network Acuity measure including incorporating the strategy aspect of choosing direct contacts.

Acknowledgements
This material is based upon work supported by NASA under award No. 80NSSC18K0221 and by the Army Research Laboratory under grant No. W911NF-09-2-0053. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration or the Army Research Laboratory.