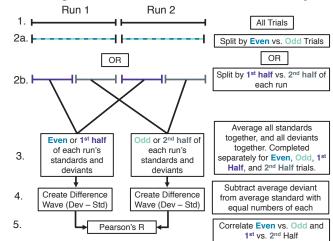
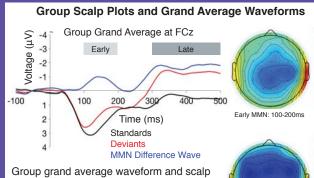
RELIABILITY OF THE MISMATCH NEGATIVITY IN A KINDERGARTEN POPULATION OVERSAMPLED FOR DYSLEXIA RISK

Sean McWeeny¹, Brittany Manning¹, Emily Harriott¹, Sara D. Beach², Ola Ozernov-Palchik², John D. E. Gabrieli², Nadine Gaab³, & Elizabeth S. Norton^{1,2} 1. Department of Communication Sciences & Disorders, Northwestern University; 2. McGovern Institute for Brain Research, MIT; 3. Laboratories of Cognitive Neuroscience, Boston Children's Hospital

Background

- The mismatch negativity (MMN) is an automatic ERP response to a deviant within a series of standard stimuli¹
- MMN can easily be measured in infants and children, is correlated with later reading, and has been suggested as a biomarker of language and reading disorders^{2,3}
- Test-retest reliability of MMN in the early time window ranges from .3 to .7, but the later time window has not been studied⁴


Research Questions


- How reliable are the early and late MMN?
- Does reliability differ by dyslexia risk?

Methods

- N=147 children age 4-6 years
- 65% at risk for dyslexia, (score <25% ile on composite standardized measures of phonological awareness, RAN, letter knowledge, or with family history of dyslexia)
- EEG recorded with BioSemi ActiveTwo, 64 electrode cap
- Oddball paradigm with natural speech /da/ and /ba/, 90% standards
- 2 runs (1 with each stimulus as standard), 1200 trials each, 500ms SOA Referenced offline to mastoids, LP filtered at .01Hz, epoched, artifact
- rejected, HP filtered at 30Hz, scalp referenced Final sample includes n=120 with >100 accepted deviant trials

Determining Even vs. Odd and 1st vs. 2nd half reliability

plots and for early (top) and late (bottom) MMN. Scalp plots and all measurements are of mean amplitude in two literaturedefined time windows (early: 100 - 200ms: late: 300 - 500 ms post stimulus onset).

Even vs. Odd and 1st Half vs. 2nd Half r < .4 **Reliability: Early and Late MMN** .4 < r < .6r > 6

Late MMN: 300-500ms

								1 2.0	
		Early MMN				Late MMN			
		1	z	2		1	z	2	
ppo	F	0.52	0.54	0.58	F	0.63	0.63	0.70	
Even vs.	FC	0.57	0.65	0.51	FC	0.61	0.64	0.60	
Evel	С	0.54	0.48	0.49	С	0.64	0.56	0.60	
Ŧ		1	z	2		1	z	2	
d Hal	F	0.06	0.03	0.16	F	0.02	0.07	0.08	
st vs. 2 nd Half	FC	0.17	0.12	0.07	FC	0.08	0.20	0.18	
1 st v	С	0.10	0.00	0.03	С	0.06	0.00	0.03	

Even vs. odd correlations are higher than 1st vs. 2nd half for both early and late MMN across 9 fronto-central electrodes. This indicates that the response changes over time, perhaps due to habituation, fatigue, or non-neural sources.

	Ev	en vs.	Odd F	Reliabil	ity for	Late	MMN I	oy Risk			
.4 < r < .6											
r > .6 No-Risk (n=42) At-Risk (n=42)											
		1	z	2		1	z	2			
ppo	F	0.47	0.47	0.62	F	0.68	0.71	0.73			
-	FC	0.62	0.53	0.58	FC	0.71	0.71	0.60			
Even	С	0.65	0.65	0.61	С	0.60	0.52	0.52			

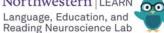
Mean of nine Pearson correlations for no-risk for dyslexia group is .58 vs .64 for at-risk group. Reliability does not differ between groups (t(8) = -1.37, p = .21)

Conclusions

- Reliability of the late MMN assessed by even-odd comparison is slightly higher than the early MMN
- The early and late MMN change over a short time period (~20 minutes)
- Dyslexia risk status does not seem to affect reliability
- The MMN is likely not reliable enough to use as a screening tool for language or reading disorders on its own at this age

Future Directions

- Investigate the effect of paradigm length on habituation and fatigue
- Investigate the effect of number of trials on reliability


References

- 1. Näätänen, R., et al. (2012). Clinical Neurophysiol, 123(3), 424-458.
- 2. Neuhoff, N., et al. (2012). PloS one, 7(5), e34909.
- 3. Halliday, L. F., et al. (2014), J Neurodev Disord, 6(1), 21.
- 4. Bishop, D., et al. (2010). J Neurosci, 30(46), 15578-15584.

Funding: NIH R01HD067312 to JDEG & NG More info: http://learnlab.northwestern.edu https://gablab.mit.edu/index.php/readstudy Contact:

SeanMcWeeny2022@ u.northwestern.edu

Cognitive Neuroscience Society, 2018