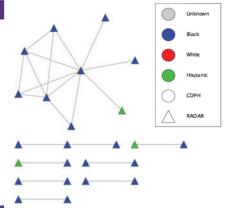


Targeting new HIV prevention strategies through the combination of research and public health surveillance data

Ethan Morgan, PhD^{1,2}; Stephanie Masiello Schuette, PhD³; Richard D'Aquila, MD¹; Brian Mustanski, PhD^{1,2};

¹ Northwestern University Feinberg School of Medicine; ² Northwestern Institute for Sexual and Gender Minority Health & Wellbeing; ³Chicago Department of Public Health ethan.morgan@northwestern.edu



INTRODUCTION

- Phylogenetic analyses can be used to assess differences between genetic sequences of persons infected with HIV and to retrospectively construct transmission networks.¹
- These analyses can also be used to ascertain differences in HIV transmission risk by viral subtype,² drug resistance profile,³ and geographic location of sexual encounters.¹
- Past work has found that HIV transmission clusters are composed primarily of young Black men who have sex with men (MSM).¹
- These studies, however, have focused primarily on geographic differences,¹ basic demographic characteristics,^{4,5} or were conducted solely among young black men who have sex with men (MSM).⁵
- To better target and utilize research data, and to potentially prevent downstream transmission of HIV through sexual networks of YMSM, it is necessary to develop a better understanding of the risk environment in which study participants exist.

METHODS

- Data were collected as part of RADAR, an ongoing longitudinal cohort study of YMSM living in the Chicago metropolitan area.
 - Participants were recruited using a multiple cohort, accelerated longitudinal design.
 - Participants were between 16 and 29 years of age, assigned male at birth, and had a sexual encounter with a man in the previous year or identified as gay, bisexual or transgender.
 - HIV infection status, using fingerstick samples, was determined using the HIV1/2 Ab/Ag Combo 4th gen POC test
- · Chicago Department of Public Health (CDPH) Data
 - All HIV genomic sequences from the PRRT pol region were obtained from CDPH electronic HIV surveillance records
- · Genetic Sequencing
 - HIV DNA sequence generation utilized polymerase chain reaction and Sanger sequencing.
 - The protease and reverse transcriptase (PRRT) sections of the *pol* region of the viral genome were sequenced.
 - One sequence was obtained from each participant at either baseline or the visit in which they seroconverted (n = 150).
- Analyses
 - Sequences were aligned to the Consensus B HIV reference sequence using HIV-Trace.
 - Potential transmission events were defined as having a genetic distance ≤0.015 nucleotide substitutions per site.
 - A cluster was defined as ≥2 persons linked by ≥1 potential transmission event.
 - For the purposes of this analysis, CDPH data included: 1) ties to RADAR participants and 2) the ties of the individuals connected to RADAR participants

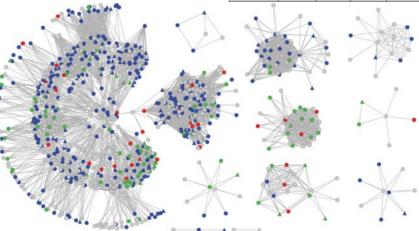

Figure 1. Inferred HIV transmission networks among HIV diagnosed RADAR participants, 2015-2017. Assessed using the *pol* region of the HIV genome where ties between nodes were inferred with a maximum genetic distance of 0.015 nucleotide substitutions per site.

Table 1. Demographic characteristics of HIV diagnosed Chicago residents, RADAR and CDPH eHARS, 2008-2017 (N=451)

n	%
289	64.1
58	12.9
82	18.2
22	4.9
33	7.3
271	60.1
85	18.8
62	13.7
	289 58 82 22 33 271 85

Table 2. Total number of ties between race/ethnicities among HIV diagnosed Chicago residents, RADAR and CDPH eHARS (N=3325)

	Black	White	Hisp.	Other
Black	1395	-	-	-
White	558	54	-	-
Hispanic	798	162	109	-
Other	174	30	38	7

Figure 2. Inferred HIV transmission networks among HIV diagnosed Chicago residents, 2009-2017. Assessed using the *pol* region of the HIV genome where ties between nodes were inferred with a maximum genetic distance of 0.015 nucleotide substitutions per site. RADAR and CDPH eHARS, 2008-2017.

RESULTS

- · Among RADAR participants only:
- 221 (21.4%) were identified as HIV-positive
 - 8 clusters existed with 22 ties between 24 participants
 - 150 sequences were available for analysis (the remainder were
 - virally suppressed with amplification not possible)

 Participants in an HIV transmission cluster:
 - Were significantly younger (p < 0.001),
 - Had more recent HIV diagnoses (p < 0.001).
 - And were less dependent on both marijuana and alcohol (both p < 0.001).
- · Among RADAR and CDPH individuals:
 - 11 clusters existed with 3325 ties between 451 individuals
 - 93 (62%) RADAR participants clustered with CDPH data
 - The majority of individuals were black (289, 64.1%) and aged 20-29 (271, 60.1%)
 - By race, the majority of ties existed between black individuals (1395, 42.0%), while by age, the majority of ties existed between those who were aged 20-29 (1075, 32.3%)
 - Racial homophily was not a significant predictor of ties between individuals (p = 0.302) while age category homophily was a significant predictor (p<0.001)
 - Compared to black individuals, Asian (p<0.001) and other (p=0.022) individuals had significantly fewer nodes.
 - Compared to those aged 20-29, those aged <20 (p<0.001), 30-39 (p<0.001), >40 (p<0.001) had significantly few nodes in the transmission network

DISCUSSION

- Fewer than expected RADAR participants cluster with city-wide data suggesting that non-clustering individuals are either being diagnosed with HIV outside the city limits or unexpectedly divergent sequences.
- Clusters consisted primarily of younger, black individuals, however, demographic characteristics differed by cluster.
- Combining research and surveillance data to re-construct transmission networks has the potential to provide a new method of analyzing data on new participants
- Future work should aim to assess survey data in the context of these larger transmission network structures.

Funding: This project was supported by NIH/NIDA U01DA036939.

Homes Cotte Manager (Space Depoint County of the County of

Challmet K, Staelens D, Black S, et al. Epidemiological study of phylogenetic transmission clusters in a local HIV-1 epidemic reveals distinct differences between subtype B and non-B infections. BMC forefrome discenses 2010-10.

Yerly S, Junier T, Gayet-Ageron A, et al. The impact of transmission clusters on primary drug resistance in newly diagnosed HIV-1 infection. Aids 2009; 23(11): 1415-23.

5. Morgan E, Nyaku AN, D'Aquila RT, Schneider JA. Determinants of HIV Phylogenetic Clustering in Chicago Among Young Black Men Who Have Sex With Men From the uConnect Cohort. J Acq