

Comprehensive analysis of transcriptional response upon multiple drug treatments

Yizhen Zhong, BS¹; Minoli Perera, PhD, PharmD¹ ¹Department of Pharmacology, Northwestern University Feinberg School of Medicine

Introduction

- Investigating the drug response at the transcriptional level is powerful for understanding the mechanism of drug adverse effects, elucidating inter-individual drug response variability and developing personalized therapies.
- However, drug perturbation experiments are limited to immortal cell lines which do
 not reflect the true physiology and gene expression of the liver, a key organ for
 drug metabolism.
- Moreover, available resources are mostly based on microarray which lacks the broad dynamic range on RNA-sequencing data in capturing transcript abundance.
- Here, we aim to characterize the transcriptional response upon drug treatments in liver powering by the RNA-seq technology.

Methods and Materials

- We treated 68 primary human hepatocytes derived from donors of African American ancestry with 6 known inducers of drug metabolism, Omeprazole, Phenobarbital, Dexamethasone, Carbamazepine, Phenytoin and Rifampicin and measured the transcriptome via RNA-seq technology before and after treatment.
- We performed pair-wise differential expression (DE) analysis and identified genes that were up- or down-regulated upon drug treatment.

А

- We utilized Grade of membership (GoM) clustering to capture the heterogeneity among drug response profiles.
- We used weighted co-expression network to compare the expression regulatory architecture among drug treatments.

	Drugs overview							
	Omeprazole	Phenobarbital	Dexamethasone	Carbamazepine	Phenytoin	Rifampicin		
Application	Stomach ulcers	Seizures	Inflammatory and autoimmune conditions	Seizures	Seizures	Antibiotic		
Mechanism of action	Proton pump inhibitor	Acts on GABA Glucocorticoi receptor receptor agoni Immunosuppre ant		Potassium channel modulator, Sodium channel blocker	Sodium channel blocker	RNA polymerase inhibitor		
Targets	ABCB1 ABCC3, ATP4A, AHR, CYP2C19, CYP3A4	ABCB1, GABRA1, CBRNA4, CHRNA7, GRIA2, GRIA2, CYP2C19, CYP2C9, CYP2B6	ANXA1, CYP3A4, CYP3A5, NOS2, NROB1, NR3C1, NR3C2	ABCB1, CYP1A2, CYP3A4, SCN1A, SCN3A, SCN5A	ABCB1, CYP2B6, CYP2C19, CYP3A4, SCN1A, SCN2A, SCN5A	ABCB1, CYP2B6, CYP2C19, CYP2C8, CYP3A4, CYP3A5, NR112, SLC01A2, SLC01B1, SLC01B3		

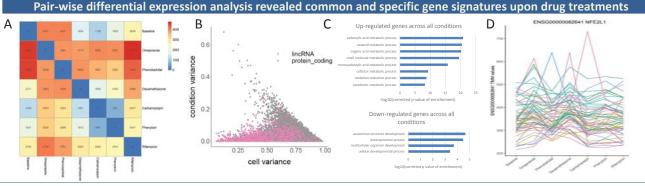
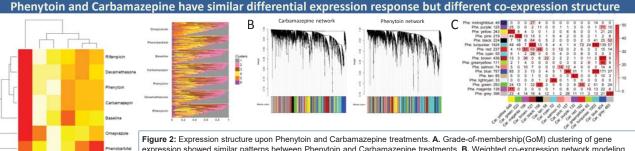



Figure 1: Expression signatures upon multiple drug treatments. A. Pair-wise differential expression analysis demonstrated treatment with Phenobarbital and Omeprazole induced the strongest response and Carbamazepine induced the lowest response. B. More variance in gene expression was attributed to inter-individual variance than inter-condition variance. C. Top Gene Ontology terms enriched in genes that were up- or down-regulated across all conditions compared with baseline. D. Common up-regulated genes are enriched for a transcription factor, NEF2L1, targets.

expression showed similar patterns between Phenytoin and Carbamazepine treatments. **B**. Weighted co-expression network modeling demonstrated distinct co-expression architectures. **C**. Mapping of modules between two networks identified modules specific to drug treatment (e.g. greenyellow for Carbamazepine and salmon for Phenytoin).

ase		Future work		Conclusions
or	•	Investigate the role of NFE2L1 in modulating drug response with ChIP-seq and functional analysis.	•	 Drug perturbation on primary hepatocytes allows us to characterize the drug- specific mechanism of action and identify generic signatures of drug response.
., 5, 9, 3,	•	Identify pharmacologically relevant genes whose expression or fold-change upon drug treatment are associated with African ancestry.	•	 Different drugs exhibited broad-spectrum transcriptomic responses. NFE2L1 may serve as the general up-stream regulator of drug treatments.
4, 5, .,	•	Explore the different roles of protein-coding RNA and long non-coding RNA in modulating drug response.		Both differential expression analysis and GoM clustering demonstrate the similarity between Phenytoin and Carbamazepine, which may result from their common
N2, 81, 83	•	Integrate the expression with genotype to identify common and drug-specific genetic regulators.		therapeutic application on epilepsy. Co-expression network analysis highlights drug-specific regulatory architecture.

Reference: Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN: **The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease**. science 2006, **313**:1929-1935. Chhibber A, French CE, Yee SW, Gamazon ER, Theusch E, Qin X, Webb A, Papp AC, Wang A, Simmons CQ: **Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines**. *The pharmacogenomics journal* 2017, **17**:137. Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD, Chasman DI, Mecham BH, Howie B, Shim H, Naidoo D: **A statin-dependent QTL for GATM expression is associated with statin-induced myopathy**. *Nature* 2013, **502**:377.

7R01MD009217-04