Lost in translation: Mutating the ribosome active site in vitro

Anne d'Aquino¹, Tasfia Azim², Nikolay Aleksashin³, Adam Hockenberry¹, Shura Mankin³, and Michael Jewett^{1,2}

¹Interdisciplinary Program in Biological Sciences (IBiS), Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA ²Northwestern Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA ³Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL, 60607, USA

Summary & Conclusions

- Despite the high conservation of the ribosome's PTC, there is still incredible plasticity within its catalytic core.
- Permissive mutation pockets reside around both the A-site and P-site.
- Mutations of highly conserved PTC nucleotides impact translation kinetics and fidelity.
- Basic science studies of the ribosome's PTC may provide insights into engineering the active site

Support & Funding

ACKNOWLEDGEMENTS:

Erik Carlson, Dr. Mankin (UIC)

Northwestern University Ryan Fellowship

JewettLab.northwestern.edu annedaquino2019@u.northwestern.edu